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ABSTRACT: This work presents a process modeling-based methodology towards quality by design that was applied throughout
the development lifecycle of the ibipinabant API step. By combining mechanistic kinetic modeling with fundamental
thermodynamics, the degradation of the API enantiomeric purity was described across a large multivariate process knowledge
space. This knowledge space was then narrowed down to the process design space through risk assessment, target quality
specifications, practical operating conditions for scale-up, and plant control capabilities. Subsequent analysis of process
throughput and yield defined the target operating conditions and normal operating ranges for a specific pilot-plant
implementation. Model predictions were verified via results obtained in the laboratory and at pilot-plant scale. Future efforts were
focused on increasing fundamental process knowledge, improving model confidence, and using a risk-based approach to
reevaluate the design space and selected operating conditions for the next scale-up campaign.

■ INTRODUCTION
The quality by design (QbD) initiative aims to ensure
pharmaceutical product quality via scientific and process
understanding, risk management, critical quality attribute
(CQA) control strategies, and multivariate design space
definition.1−4 In contrast to the traditional approach of
demonstrated process reproducibility and testing of the final
product, “quality should be built in by design” within the QbD
paradigm.5−7 While QbD is a potential aspect of the regulatory
filing, the foundations of a QbD filing are created throughout
the process development lifecycle (Figure 1). Process data

generated early in development aid in process evaluation and
enable prioritization of development activities. As development
continues, the breadth of scientific process understanding
increases as do the requirements on the accuracy and extent of
design space understanding.8 In order to turn process data into
process knowledge, data visualization and process modeling are
employed to enable predictive capabilities. New process
knowledge is then used to modify the existing process or

control strategy and update the resulting design space. It is
recognized that full and comprehensive design space under-
standing is neither feasible nor practical, especially at earlier
stages of development, and risk-based evaluations focus the
development efforts to the highest risk process aspects.9

In this contribution we describe a process modeling-based
approach to QbD for the ibipinabant active pharmaceutical
ingredient (API) step. Ibipinabant was in development as a
cannabinoid CB-1 receptor antagonist for the treatment of
obesity.10,11 Within the chemical development group, the
compound transitioned from a 6-kg delivery of API for
toxicology studies and drug product formulation development
to a 175-kg delivery of API for late-stage clinical trials.
Throughout the program’s life cycle, the focus of the process
development team was to generate sufficient process under-
standing to enable risk assessments, define the design space that
was “fit-for-purpose” given the corresponding stage of develop-
ment, address scale-up control limitations by adjusting the
target operating ranges, and implement effective control
strategies. In the case study presented here, this methodology
was applied in particular to understand and control undesired
degradation of enantiomeric purity during the API crystal-
lization. What follows is a description of the implemented work
flow along with the kinetic and thermodynamic process models
developed to support the underlying QbD approach.

Description of the API Step and the Starting Point for
This Case Study. The starting point for this case study was the
API process utilized in the first pilot-plant campaign (Scheme
1). In this process, the aspartic acid salt of the final intermediate
(1) was initially converted to the free base in sodium hydroxide
and methylene chloride. Following a phase separation, the rich
organic stream was washed with water and then reacted with 4-
chlorobenzenesulfonyl chloride (SuCl) using biphasic Schot-
ten−Baumann conditions. The excess 4-chlorobenzenesulfonyl
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Figure 1. Pharmaceutical quality by design (QbD) methodology.
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chloride was removed using 4-dimethylaminopyridine
(DMAP), the rich organic layer was washed with acid and
water, and the rich organic layer was adjusted to neutral pH.
The rich organic stream was then subjected to a distillative
crystallization by a solvent exchange to 2-propanol in order to
provide the crystalline API (3).
In preparation for the next pilot-plant campaign, several

changes were made to the API process (Scheme 2). The final
intermediate was changed from an aspartic acid salt to a tartaric
acid salt. The phase separation and washes between the
formation of the free base and sulfonylation reaction were
removed, and these steps were run more concentrated. The pH
adjustment prior to the solvent exchange was removed. Finally,
the antisolvent for the distillative crystallization was changed
from 2-propanol to ethanol. While the rationale behind each
individual change will not be discussed in detail here, the
modifications collectively provided an increase in process
robustness and throughput, and a simplification of the analytical
burden during API release testing.
At this point in development, sufficient process knowledge

existed to identify potential critical quality attributes (CQAs) of
the API and to begin prioritizing these CQAs by risk. The
proposed CQAs for the drug substance were identified as chiral
purity, genotoxic impurity profile, chemical purity profile,
residual solvents, potency, color, form, and particle size; the
performance of the modified API process against these CQAs
was assessed via a quality risk assessment using failure mode

and effect analysis (FMEA). Twelve high-priority failure modes
were identified which can be broadly categorized into genotoxic
impurity control strategy and insufficient understanding of the
process design space. In order to address the risks associated
with insufficient process design space understanding, approx-
imately 20 individual lab experiments were conducted on the
new process (Scheme 2). These were single-goal experiments
conducted at 10−400 g scale for general process development
purposes and were not part of a systematic study incorporating
design of experiments (DOE). The experimental conditions
along with the typical results are shown in Figure 2. Although
the sulfonylation reaction was typically complete (<1 HPLC
area percent (AP) of 2 remaining) within 3 h and provided
product with >99.85 AP purity and >99.9% ee, a few
experiments conducted near the limits of the parameter ranges
had unexpected results. Four experiments showed lower than
expected reaction conversion (2−4 AP of 2 remaining), and
one experiment resulted in API with unacceptable enantiomeric
purity (30% ee). Initial analysis of this data set suggested that
high levels of 2 at the end of the sulfonylation reaction could
lead to racemization of the API in the subsequent distillative
crystallization. At this point, one response could have been to
narrow the parameter range to the subset of experimental
conditions providing acceptable API quality and proceed
forward. Instead, we sought to understand the observed process
performance via the development of process models for the
sulfonylation reaction and the distillative crystallization. We

Scheme 1. API process at the time of the first pilot-plant campaign

Scheme 2. Process for the second pilot-plant implementationa

aChanges from the previous process are highlighted in blue.
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combined these models with an understanding of the chiral
purity which was identified as the highest risk CQA through a
process risk assessment and analysis of the existing
experimental data. The goal was to then utilize the process
models and CQA understanding to guide further design space
definition as well as the development of the desired process
operating ranges for the next pilot-plant campaign. A general
strategy in building the design space is to address the most
restrictive CQA while, in parallel, verifying acceptable perform-
ance of the remaining CQAs. As chiral purity was determined
to be the most restrictive CQA, its control and understanding is
discussed in depth here, and development efforts focused on
understanding and controlling the remaining CQAs are not
discussed.
Development of a Kinetic Model for the Sulfonylation

Reaction. The initial step in the creation of a process model
for the sulfonylation reaction was generation of an Ishikawa
diagram (Figure 3). Potential factors affecting the level of 2
include reaction concentration, reaction temperature, equiv-
alents of 4-chlorobenzenesulfonyl chloride, potency of the
input material (wt/wt %), equivalents of NaOH, reaction time,
mixing within the biphasic system, source of the input materials,

and additional quality attributes of the input reagents and/or
solvents.12 On the basis of the existing process knowledge, the
first six of these nine factors were selected for model building
and were translated into the simple kinetic model shown below.
Only if a model built from these factors failed to adequately
describe the sulfonylation reaction performance across the
existing data set would additional factors be incorporated into
the model.
Mechanistically, the reaction produces HCl as a side product

which must be sequestered for the reaction to continue.
Therefore, the model takes into account the amount of NaOH
relative to the extent of reaction conversion as follows:
Reaction rate when the total moles of NaOH are greater than

the moles of HCl produced via reaction:

=

= × ‐

r

k

rate of formation of API

[2] [4 chlorobenzenesulfonyl chloride]
1

where k = k1 × exp(−Ea,1/RT), k1 = 1.49 × 10−2 L/mol/s ±
8.5%, Ea,1 = 47.96 kJ/mol ± 21%, Tref = 25 °C
Otherwise:
For simplicity, we assumed the reaction rate to be zero when

the total moles of NaOH are less than the moles of HCl
produced via reaction:

=r 01

Using DynoChem software from Scale-up Systems Ltd., the
API reaction kinetic model was fit to the previously existing
experimental data. The data was divided into a model-building
calibration set (N = 9), which was used to regress the model
parameters shown above, and a validation set (N = 5), which
was used to verify the accuracy of the model. The calibration
data set and resulting model fit are shown in Figure 4. A parity
plot of reaction conversion results for the model building,
model verification, and pilot-plant scale-up data sets is shown in
Figure 5, and error statistics for the model are provided in
Table 1.

Development of a Hybrid Thermodynamic/Kinetic
Model for the Degradation of Enantiomeric Purity
during the Distillative Crystallization. The Ishikawa

Figure 2. Process parameter ranges and typical results from
approximately 20 lab experiments conducted on the process shown
in Scheme 2.

Figure 3. Ishikawa diagram for the API step, highlighting factors that potentially affect the enantiomeric purity of the product. Factors shown in blue
were accounted for in the sulfonylation reaction and distillative crystallization models. Factors shown in red were not included in the models.
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diagram for the degradation of API enantiomeric purity is
shown in Figure 3. Scientific intuition, current process

knowledge, and the risk assessment identified the distillative
crystallization as the highest risk unit operation for ee
degradation. Potential factors affecting the rate of degradation
during the distillative crystallization include residual 2,
concentration, distillation temperature (which is determined
by the distillation pressure and solvent composition),
distillation time, API solubility, and modulation of the
racemization reaction rate due to changing solvent composition
during the distillation.13 Modeling of the system is complicated
by the fact that the batch temperature, concentration, and
solvent ratio are changing during the distillation. Additionally,
the mechanism of racemization was not fully understood at the
time of model development although a base-mediated
deprotonation of the API chiral center was suspected. Given
these factors, a hybrid thermodynamic/kinetic model was
pursued rather than a fundamental kinetic model as was
generated for the sulfonylation reaction.
In order to capture the changing batch temperature profile

throughout the course of the distillation exchanging methylene
chloride for ethanol, as well as the dependence of this
temperature profile on the distillation pressure, a simple
batch distillation model was constructed in DynoChem. The
model described vapor−liquid−equilibrium via Antoine co-
efficients and UNIFAC activity coefficients for the two solvents.
Mass and energy balances were incorporated to account for
changes in the product concentration and solvent ratio as well
as to capture the cycle time of the distillation based on specific
vessel heat transfer coefficients and jacket set points. The
model was also utilized to evaluate the performance under
continuous vs staged solvent addition distillation configura-
tions. The full details of the distillation model are not described
here; however, similar batch distillation models are fully

Figure 4. Sulfonylation reaction conversion profiles for the nine model-building experiments. Solid lines represent the model prediction, and open
circles represent the experimental values. Experimental conditions are: (A) 35 °C, 1.13 equiv 4-chlorobenzenesulfonyl chloride, 6 mL/g; (B) 20 °C,
1.09 equiv 4-chlorobenzenesulfonyl chloride, 5.5 mL/g; (C) 5 °C, 1.12 equiv 4-chlorobenzenesulfonyl chloride, 10 mL/g; (D) 20 °C, 1.10 equiv 4-
chlorobenzenesulfonyl chloride, 5 mL/g; (E) 30 °C, 1.12 equiv 4-chlorobenzenesulfonyl chloride, 6 mL/g; (F) 35 °C, 0.94 equiv 4-
chlorobenzenesulfonyl chloride, 5 mL/g; (G) 10 °C, 1.09 equiv 4-chlorobenzenesulfonyl chloride, 4.5 mL/g; (H) 10 °C, 1.00 equiv 4-
chlorobenzenesulfonyl chloride, 8 mL/g; (I) 20 °C, 1.03 equiv 4-chlorobenzenesulfonyl chloride, 6 mL/g.

Figure 5. Parity plot for sulfonylation reaction conversion.

Table 1. Sulfonylation reaction model error for the model
building and model verification data sets

model bldg
(entire data set)

model ver.
(entire data

set)
model bldg
(ROIa)

model ver.
(ROIa)

rmsb error
(AP)

0.40 0.42 0.19 0.36

mean rel.
error (%)

16.3 24.4 24.4 28.1

mean abs.
error (AP)

0.29 0.25 0.14 0.20

max. abs.
error (AP)

0.95 0.97 0.36 0.57

aFor error analysis, the ROI (region of interest) includes points in
which the level of 2 was ≤2.0 AP. brms = root mean square.

Organic Process Research & Development Article

dx.doi.org/10.1021/op2003024 | Org. Process Res. Dev. 2012, 16, 567−576570



described in the DynoChem software supporting information.14

Example temperature trends for the distillation of methylene
chloride to ethanol under different operating conditions are in
Figure 6.

With the temperature profile defined by the thermodynamic
distillation model, several elementary reaction rate equations
were postulated to describe the degradation of API
enantiomeric purity. The resulting fit of the epimerization
kinetics for each rate equation was then compared against 13
epimerization data sets obtained at constant temperature. The
rate equation most accurately predicting the system perform-
ance is shown below, and the fit to the model building data set
is in Figure 7.

= = ×r krate of API enantiomeric degradation [API] [2]2

where k = k2 × exp(−Ea,2/RT), k2 = 1.90 × 10−3 L/mol/s ±
10.8%, Ea,2 = 88.2 kJ/mol ± 12.1%, Tref = 78 °C
Combination of the thermodynamic distillation model and

the kinetic API enantiopurity degradation model allowed the
factors of residual 2, concentration, distillation temperature,
and distillation time to be captured. The model was verified
against a set of five additional distillation experiments (Figure
8). Summary error statistics for the model are listed in Table 2.
The prediction of the hybrid model is not as accurate as that
obtained from the sulfonylation reaction mechanistic model,
and the hybrid model is fairly conservative, erring on the side of
over-prediction of enantiopurity degradation. Given the stage of
development and the intended use for the model predictions in
proposing design space conditions to be verified via experi-
ments, this level of model error was deemed acceptable.
Definition of the Design Space and Target Operating

Conditions for the 175-kg Pilot-Plant Campaign. Model
Predictions and Data Visualization. The sulfonylation

reaction conversion and the distillative crystallization enantio-
purity degradation models were then combined to predict
performance across a large process knowledge space (Table 3).
Parameter ranges were chosen on the basis of prior process
experience to encompass a sufficiently large and practical
processing window as well as to contain the expected target-
operating conditions. Figure 9 shows two example predictions
for reaction conversion and two example predictions for
enantiopurity degradation. In total, 1008 predictions for
reaction conversion and 432 predictions for enantiopurity
degradation were obtained to fully describe the knowledge
space shown in Table 3.
While the individual time course reaction trends (Figure 9)

were useful for visualizing model predictions from a small
number of conditions, we chose to assess the entire knowledge
space via two-dimensional contour plots (Figure 10). In order
to represent all the data from the four-dimensional knowledge
space, groups of contour plots were required. Analysis of the
model predictions for sulfonylation reaction conversion across
the parameter range considered showed that reaction temper-
ature and equivalents of 4-chlorobenzenesulfonyl chloride had
the highest impact on reaction conversion. These parameters
were included on the axes of each contour plot. The impact of
reaction concentration was lower and was visualized by looking
across groups of contour plots where each contour plot was
generated for a different reaction concentration. Reaction time
was also visualized by looking across groups of contour plots
where each plot was generated for a different reaction time. In
the case of enantiopurity degradation, the level of residual 2 and
the distillation pressure (which is directly correlated to the
distillation temperature profile) had the highest impact on % ee
loss and were included on the axis of each contour plot. The
effects of distillation time and distillation end point can be
visualized by looking across groups of contour plots.
Representative sulfonylation reaction contour plots are shown
in Figure 10 for the lowest reaction conversion, the center point
of the knowledge space, and the highest reaction conversion.
Representative enantiopurity degradation plots are shown in
Figure 10 for the least % ee loss, the center point of the
knowledge space, and the highest % ee loss.

Defining a Control Strategy to Simplify Analysis of the
Design Space. In order to simplify the representation of the
design space for the entire step, we chose to specify a maximum
allowable level of 2 at the end of the sulfonylation reaction as
the quality gate keeper for the distillative crystallization to be
monitored via an in-process-control test (IPC). Remediation
under IPC failure would consist of an additional 4-
chlorobenzenesulfonyl chloride charge. This allowed the
sulfonylation reaction and distillative crystallization to be
treated as two independent unit operations and optimized
accordingly around a common value of residual 2. In doing so,
we arbitrarily limited the design space to a subset of the
acceptable region where residual 2 was less than its maximum
level specified, but the advantage in simplification outweighed
the additional parameter restrictions. This enabled the focused
development of a control strategy targeting residual 2.
Additionally, kinetic understanding of the sulfonylation reaction
allowed for conditions to be selected that robustly afforded
acceptable reaction conversion.

Determination of the Design Space and Selection of the
Desired Operating Conditions. In order to determine the
desired operating conditions for the next scale-up campaign, we
needed to balance conditions providing robust product quality

Figure 6. Batch temperature and wt % ethanol trends for distillations
at (A) 1013 mbar and (B) 300 mbar.
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with realistic and practical plant operating conditions. From a
quality standpoint, purging studies at this point in development
suggested that the API crystallization could purge the undesired
enantiomer at levels of up to 2% ee. Therefore, the upper
boundary on the distillative crystallization design space was set
at the red line in Figure 11, A and B, allowing the entire design

space to the bottom and left of the red line to be potentially
utilized. For example, we could operate the distillation at 300
mbar and produce API meeting its specifications with up to 2.0
AP of residual 2 present during a distillative crystallization
lasting 8 h. Alternatively we could drive the sulfonylation

Figure 7. API enantiomeric purity degradation profiles for the 13 model-building experiments. Solid lines represent the model prediction, and open
circles represent the experimental values. Experimental temperature and compound 2 conditions are: (A) 45 °C, 1.3 AP; (B) 45 °C, 2.2 AP; (C) 45
°C, 2.5 AP; (D) 45 °C, 2.7 AP; (E) 60 °C, 2.6 AP; (F) 60 °C, 2.6 AP; (G) 60 °C, 3.5 AP; (H) 70 °C, 1.4 AP; (I) 70 °C, 2.3 AP; (J) 70 °C, 2.7 AP;
(K) 78 °C, 1.8 AP; (L) 78 °C, 2.5 AP; (M) 78 °C, 3.7 AP.

Figure 8. Parity plot for degradation of API enantiomeric purity
during the distillative crystallization.

Table 2. Enantiopurity degradation model error for the
model building and model verification data sets

model bldg
(entire data set)

model ver.
(entire data

set)

model
bldg

(ROIa)
model ver.
(ROIa)

rmsb error
(% ee)

15.9 8.7 7.9 7.2

mean rel.
error (%)

96.0 580.3 133.1 870.5

mean abs.
error (% ee)

5.6 5.8 1.9 4.4

max abs. error
(% ee)

34.8 17.9 25.1 15.7

aFor error analysis, the ROI (region of interest) includes points in
which the level of API enantiopurity degradation was ≤4.0% ee. brms
= root mean square..
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reaction to <0.05 AP of 2 and perform the distillation at 300−
700 mbar for up to 48 h (Figure 11 B).
Although we had narrowed the distillative crystallization

design space on the basis of quality considerations, some
regions of the remaining design space were not achievable
based on plant capability. From prior knowledge of the
equipment train chosen for the next implementation, it was
determined that controlling environmental emissions from a
methylene chloride distillation operating at <400 mbar was
prohibitively expensive. In addition, from the known equipment
size and heat transfer coefficients it was established that the
total distillation would require approximately 8 h at the
proposed batch size. Selecting a conservative distillation end
point of 98 wt % EtOH provided a longer distillation time at

elevated batch temperatures. Finally, historical performance of
the vacuum pressure control system suggested that the
distillation could be adequately operated within ±50 mbar of
the desired set point without significant concern.
In addition to the constraints on the distillative crystal-

lization, there were also quality, practical, and business
constraints on the sulfonylation reaction which were taken
into consideration during design space definition. Model results
suggested that the reaction conversion limit could be specified
as low as <0.05 AP of residual 2 which would provide the
largest design space for the distillative crystallization; however,
doing so would result in a much smaller design space for the
sulfonylation reaction (high temperature, long reaction times,
high equivalents of reagent). From a quality standpoint,
unreacted 4-chlorobenzenesulfonyl chloride could form a
genotoxic sulfonate ester during the distillative crystallization;
therefore, using greater than 1.2 equiv of 4-chlorobenzene-
sulfonyl chloride was undesired. From a business standpoint,
reaction times of greater than 24 h would be needed at the 5 °C
temperature conditions to achieve <0.05 AP of residual 2, thus
limiting plant throughput.
After considering all the factors listed above and balancing

the sizes of the sulfonylation reaction and distillative
crystallization design spaces, we chose to operate the distillation
for the pilot-plant campaign at 500 mbar. Given a pressure
control range of ±50 mbar, this allowed up to 1 AP of residual
2 to be present at the end of the sulfonylation reaction (Figure
12A). To achieve this level of reaction conversion, we needed
to operate the sulfonylation reaction within the design space
shown in Figure 12B. The manufacture of clinical supplies at
the pilot scale provides an opportunity to test the scale
independence of the process and the ability of the process

Table 3. Process parameter ranges and number of parameter
levels utilized for model-based prediction of sulfonylation
reaction conversion and degradation of API enantiopurity
during the distillative crystallization

process parameter
min.
value

max.
value

# of
“levels”

sulfonylation reaction model
temp. (°C) 5 35 7
4-chlorobenzenesulfonyl chloride
(equiv)

1.0 1.2 6

conc. (mL/g) 5 10 6
reaction time (h) 2 5 4

distillative crystallization model
pressure (mbar) 300 1013 6
residual 2 (AP) 0.05 2.0 6
distillation time (h) 8 48 4
distillation end point (wt % EtOH) 90 98 3

Figure 9. Sulfonylation reaction conversion predictions for (A) 10 °C, 1.03 equiv of 4-chlorobenzenesulfonyl chloride, 4.5 mL/g and (B) 35 °C, 1.10
equiv of 4-chlorobenzenesulfonyl chloride, 10 mL/g. API enantiomeric purity predictions for (C) 1 AP of residual 2, 1013 mbar and (D) 1 AP of
residual 2, 300 mbar.
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models to predict performance during scale-up. In order to
confirm our model predictions, we chose to operate the three
scale-up batches at distinct points within the sulfonylation
reaction and distillative crystallization design spaces as shown
by the target operating conditions in Table 4. This table also
contains the outcome from the pilot-plant campaign and
comparison of the scale-up results to the model predictions. In
summary, by using this model-based approach we were able to
define a process design space capable of producing API at the
expected purity and yield, without any detectable enantiomeric
degradation. Additionally, the agreement between the actual
results obtained and the results predicted by the model
provided confidence that the model could be accurately used to
determine the edges of failure and to guide further definition of
the design space going forward.
Generation of Additional Process Knowledge and

Revision of the Design Spaces and Target Operating
Ranges for Future Campaigns. While the 175-kg pilot-plant
campaign successfully produced API meeting all of the quality
specifications, additional development work was focused on
preparation for future campaigns and the ultimate transfer of
the process to manufacturing. Systematic evaluation of the
crystallization revealed the existence of a stable racemic
compound with an eutectic point of 86% ee. Therefore, the
thermodynamic purification of the crystallization at the current
yield was only 0.9% ee, rather than ≥2% ee as was previously
demonstrated. As a result, the design spaces for the
sulfonylation reaction and distillative crystallization required
adjustment. Additionally, new data were being collected to
improve the predictive capability of the model for the
degradation of enantiomeric purity, with specific focus on
accuracy within the small levels of ee degradation required (0−
1% ee loss). This work revealed that in the three experiments

where ee degradation was the most overpredicted by the model,
a higher than expected level of 4-chlorobenzenesulfonic acid
was present (degradation product of 4-chlorobenzenesulfonyl
chloride) during the distillative crystallization. This finding
suggested that robustness during the distillative crystallization
could be improved by implementing a pH specification on the
workup. It was also anticipated that a modification of the ee
degradation model would be required to capture the reduced
rate of racemization.
In parallel with the collection of additional process data and

improvements in the models’ predictive capabilities, the existing
models enabled design space decisions and provided parameter
settings for additional data collection to ensure process (and
therefore model) insensitivity to scale-up. Following the
methodology summarized in Figure 13, model-based predic-
tions of the critical quality attributes provided the desired
operating conditions and ranges for the 175-kg campaign and
enabled the process risk assessment. When combined with
differences in operating preferences (for example an atmos-
pheric distillation vs a vacuum distillation) and control
capabilities at a new scale-up facility, the process models were
used to predict CQA performance for the next campaign.
Future work would have focused on verifying these predictions
via lab-scale experiments and scale-up batches and utilizing the
results in the next round of process risk assessments.
Throughout these experiments, we had planned to track
CQA performance, process reproducibility, process robustness,
and process scalability to support the ultimate regulatory
filing(s). In an approach similar to that previously described by
Seibert et al.,4 critical process parameters (CPP) would have
been identified via analysis of the plant control capabilities for
each individual parameter against the parameter’s acceptable
range as described by the process design space. Parameters for

Figure 10. Representative two-dimensional contour plots. Sulfonylation reaction model predictions for residual level of 2 shown in the color contrast
at (A) the lowest reaction conversion, 10 mL/g dilution, 2 h reaction, (B) the center of the parameter range, 7 mL/g, 2 h reaction, and (C) the
highest reaction conversion, 5 mL/g, 5 h reaction. Model predictions for API enantiopurity degradation shown in the color contrast at (D) the least
amount of degradation, 90 wt % EtOH end point, 8 h distillation, (E) the center of the parameter range, 95 wt % EtOH end point, 24 h distillation,
and (F) the highest amount of degradation, 98 wt % EtOH end point, 48 h distillation. For clarity, values of greater than 12% ee loss have been
removed from the graphical representation.
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which a risk existed that could not be controlled within the
design space would have been identified as CPPs. Although the
end goal with respect to the definition and verification of the
design space for the commercial process had not yet been fully
defined, we had envisioned two possible approaches. In one
approach, similar to that described by Hallow et al.,15 the
process models would have served as a guide for selection of
the design space which would have been verified via
experiments. In a second approach, similar to that described
by Chen et al.,16 the verified process models themselves would
have defined the design space.

■ CONCLUSION
This case study details one example of a process modeling-
based work flow for QbD. Starting from data mining and risk
evaluation of the existing experimental data set, aspects of the
process which were potentially critical to quality were
identified. Although the general approach to QbD is typically
to engage in a design of experiments endeavor, in this case the
quality, quantity, and scope of the historical data were deemed
sufficient to attempt the development of mechanistic models in
the absence of a target experimental design. The models were
developed and were able to simulate and predict the failure
modes observed within the historical data set. On the basis of a
risk assessment and the stage of development, model
predictions were verified via lab-scale experiments and the

process models were then used to predict performance across
the entire parameter range. Model predictions were combined
with the anticipated acceptable quality attributes, practical plant

Figure 11. Definition of the design space for the distillative
crystallization based only on quality considerations. The level of
enantiopurity degradation is shown in the color contrast at (A) 8 h
distillation, 98 wt % EtOH end point, and (B) 48 h distillation, 98 wt
% EtOH end point. On the basis of crystallization purge data,
conditions to the left and below the red line are expected to provide
acceptable quality API. For clarity, values of greater than 12% ee loss
have been removed from the graphical representation.

Figure 12. Finalized design space for the distillative crystallization (A)
and sulfonylation reaction (B) after consideration of product quality,
realistic plant operating conditions, plant control capabilities, and
business drivers. (A) Level of enantiopurity degradation is shown in
the color contrast at the end of an 8 h distillation to a 98 wt % EtOH
end point. For clarity values of greater than 12% ee loss have been
removed from the graphical representation. (B) Level of residual 2 is
shown in the color contrast for the sulfonylation reaction at 2 h and a
volume of 7 mL/g.

Table 4. Processing conditions chosen for the 175-kg pilot-
plant campaign and the resulting reaction conversion and
enantiopurity degradation results

batch #1 batch #2 batch #3

Sulfonylation Reaction
batch size (kg) 50 60 90
temp. (°C) 20 10 30

(19.9−
25.3)

(9.5−
16.4)

(30.1−
34.6)

4-chlorobenzenesulfonyl chloride
(equiv)

1.15 1.18 1.12

conc. (mL/g) 6 5.5 8
reaction time (h) 2.5 2.5 2.5
model-predicted residual cmpd 2
(AP)

0.12 0.17 0.15

actual cmpd 2 (AP) 0.04 0.18 0.07
Distillative Crystallization

pressure (mbar) 500 500 500
(353−560) (490−

526)
(485−544)

distillation time (h) 5.5 2.8 6.3
distillation end point (wt % EtOH) 94.9 90.6 97.9
predicted ee degradation
(% ee loss)

0.00 0.08 0.13

actual ee degradation (% ee loss) <0.1 <0.1 <0.1
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operating conditions, and plant control capabilities to propose a
process design space. Further analysis of business goals
(process throughput and yield) defined the target operating
conditions and normal operating ranges for a specific scale-up
campaign. Model results were then compared to at-scale data,
and the model assumptions were reevaluated in preparation for
the subsequent scale-up campaign.
In this case study, targeted experimental designs were not

performed; rather, the data for model development were
gathered primarily from existing lab experiments originally
performed for other purposes. In doing so, unknown parameter
interactions or interactions assumed insignificant were not
captured; however, consistency between the model predictions
and the experimental data suggests the models adequately
represent the underlying physical mechanisms. Additionally,
parameters within the experimental data set were not varied in
a systematic manner as they would have been within a DOE. As
a result, model performance must be verified according to risk,
and we chose to do so via experimental verification at the
design space extremes as well as at the target operating
conditions. In the end, the development of verified process
models drove the aggregation of data collected under
dramatically different process conditions, allowed the rapid
generation of response surfaces, justified QbD-related decisions,
and enabled in-depth evaluation of the scale-up data obtained.
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Figure 13. Modeling-based QbD methodology employed in this case
study.
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